Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 12 entries in the Bibliography.


Showing entries from 1 through 12


2020

Unraveling the Formation Mechanism for the Bursts of Electron Butterfly Distributions: Test Particle and Quasilinear Simulations

Energetic electron dynamics is highly affected by plasma waves through quasilinear and/or nonlinear interactions in the Earth s inner magnetosphere. In this letter, we provide physical explanations for a previously reported intriguing event from the Van Allen Probes observations, where bursts of electron butterfly distributions at tens of keV exhibit remarkable correlations with chorus waves. Both test particle and quasilinear simulations are used to reveal the formation mechanism for the bursts of electron butterfly distribution. The test particle simulation results indicate that nonlinear phase trapping due to chorus waves is the key process to accelerate electrons to form the electron butterfly distribution within ~30 s, and reproduces the observed features. Quasilinear simulation results show that although the diffusion process alone also contributes to form the electron butterfly distribution, the timescale is slower. Our study demonstrates the importance of nonlinear interaction in rapid electron acceleration at tens of keV by chorus waves.

Gan, L.; Li, W.; Ma, Q.; Artemyev, A.; Albert, J.;

Published by: Geophysical Research Letters      Published on: 10/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090749

butterfly distribution; chorus waves; Electron acceleration; Radiation belts; nonlinear interaction; Van Allen Probes

The Impenetrable Barrier: Suppression of Chorus Wave Growth by VLF Transmitters

Rapid radiation belt recovery following storm time depletion involves local acceleration of multi-MeV electrons in nonlinear interactions with VLF chorus waves. Previous studies of an apparent impenetrable barrier at L ~ 2.8 focused on diffusion and precipitation loss mechanisms for an explanation of the sharp reduction of multi-MeV electron fluxes earthward of L ~ 3. Van Allen Probes observations for cases when the plasmasphere is contracted earthward of L ~ 3 indicate that strong coherent signals from VLF transmitters can play significant roles in the suppression of nonlinear chorus wave growth earthward of L ~ 3. As a result, local nonlinear acceleration of hundreds of keV electrons to MeV energies does not occur in this region. During the recovery of the outer radiation belt when the plasmasphere is significantly contracted, the suppression of chorus wave growth and local acceleration by the action of the transmitter waves at the outer edge of the VLF bubble contributes to the sharp inner edge of the new MeV electron population and the formation of the impenetrable barrier at L ~ 2.8.

Foster, John; Erickson, Philip; Omura, Yoshiharu; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027913

Radiation belt; Plasmapause; VLF transmitters; wave-particle interactions; Electron acceleration; nonlinear VLF chorus; Van Allen Probes

2019

Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates

A comprehensive statistical analysis on 8 years of lower-band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave-particle interaction. We find that \~5\textendash30\% of all chorus waves interact nonlinearly with \~30- to 300-keV electrons possessing equatorial pitch angles of >40\textdegree in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi-linear diffusion as commonly assumed. We discuss the possible consequences of such a large amount of high-amplitude chorus waves and examine their characteristics that can influence the efficiency of nonlinear wave-particle interactions.

Zhang, X.-J.; Mourenas, D.; Artemyev, A.; Angelopoulos, V.; Bortnik, J.; Thorne, R.; Kurth, W.; Kletzing, C.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083833

chorus waves; Electron acceleration; nonlinear wave particle interaction; THEMIS; Van Allen Probes; wave packet size

Effect of Low-Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere

In this paper, we presented two observational cases and simulations to indicate the relationship between the formation of butterfly-like electron pitch angle distributions and the emission of low-harmonic (LH) fast magnetosonic (MS) waves inside the high-density plasmasphere. In the wave emission region, the pitch angle of relativistic (>1 MeV) electrons becomes obvious butterfly-like distributions for both events (near-equatorially mirroring electrons are transported to lower pitch angles). Unlike relativistic (>1 MeV) electrons, energetic electrons (<1 MeV) change slightly, except that relatively low-energy electrons (<~150 keV) show butterfly-like distributions in the 21 August 2013 event. In theory, the LH MS waves can affect different-energy electrons through the bounce resonance, Landau resonance, and transit time scattering. By performing the Fokker-Planck diffusion simulations, we demonstrate that the bounce resonance with the LH MS waves mainly leads to the butterfly pitch angle distribution of MeV electrons, whereas the Landau resonance and transit time scattering mainly affect energetic electrons in the high-density region.

Yu, J.; Li, L; Cui, J.; Cao, J.; Wang, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA026328

bounce resonance; Electron acceleration; Landau resonance; magnetosonic waves; transit-time scattering; Van Allen Probes

2018

Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems

Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. We confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.

Agapitov, O.; Drake, J.; Vasko, I.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Angelopoulos, V.; Wygant, J.; Reeves, G.;

Published by: Geophysical Research Letters      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/2017GL076957

Electron acceleration; electron acoustic waves; induced scattering; nonlinear wave-particle interactions; Van Allen Probes; wave steepening; Whistler waves

Space Weather Operation at KASI with Van Allen Probes Beacon Signals

The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth\textquoterights radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick\textquoterights Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron flux > 2 MeV at GEO, which potentially threatened satellite operations. Based on this study, we conclude that the combination of VAP data and National Oceanic and Atmospheric Administration-Geostationary Operational Environmental Satellite (NOAA-GOES) data can provide improved space environment information to geostationary satellite operators. In addition, the findings obtained indicate that more data-receiving sites would be necessary and data connections improved if this or a similar system were to be used as an operational data service.

Lee, Jongkil; Kim, Kyung-Chan; Romeo, Giuseppe; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin;

Published by: Space Weather      Published on: 01/2018

YEAR: 2018     DOI: 10.1002/2017SW001726

Electron acceleration; Radiation belt; Relativistic electron; Space weather; Van Allen Probes

2017

Acceleration of radiation belt electrons and the role of the average interplanetary magnetic field B z component in high speed streams

In this study we examine the recovery of relativistic radiation belt electrons on November 15-16, 2014, after a previous reduction in the electron flux resulting from the passage of a Corotating Interaction Region (CIR). Following the CIR, there was a period of high-speed streams characterized by large, nonlinear fluctuations in the interplanetary magnetic field (IMF) components. However, the outer radiation belt electron flux remained at a low level for several days before it increased in two major steps. The first increase is associated with the IMF background field turning from slightly northward on average, to slightly southward on average. The second major increase is associated with an increase in the solar wind velocity during a period of southward average IMF background field. We present evidence that when the IMF Bz is negative on average, the whistler mode chorus wave power is enhanced in the outer radiation belt, and the amplification of magnetic integrated power spectral density in the ULF frequency range, in the nightside magnetosphere, is more efficient as compared to cases in which the mean IMF Bz is positive. Preliminary analysis of the time evolution of phase space density radial profiles did not provide conclusive evidence on which electron acceleration mechanism is the dominant. We argue that the acceleration of radiation belt electrons requires (i) a seed population of keV electrons injected into the inner magnetosphere by substorms, and both (ii) enhanced whistler mode chorus waves activity as well as (iii) large-amplitude MHD waves.

Souza, V.; Lopez, R.; Jauer, P.; Sibeck, D.; Pham, K.; Silva, L.; Marchezi, J.; Alves, L.; Koga, D.; Medeiros, C.; Rockenbach, M.; Gonzalez, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024187

Electron acceleration; High-speed solar wind streams; IMF Bz fluctuations; Outer Van Allen belt; Van Allen Probes

A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistler-mode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI = 1 but reaches \~ 35\textendash95 pT in the case of distinct butterfly distributions with BI > 1.3. For magnetosonic waves with amplitudes >50 pT, the occurrence rate of butterfly distribution is above 80\%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.

Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Funsten, H.;

Published by: Geophysical Research Letters      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2017GL073116

butterfly distributions; Electron acceleration; Landau resonance; magnetosonic wave; Radiation belt; Van Allen Probes; Wave-particle interaction

2016

Electron holes in the outer radiation belt: Characteristics and their role in electron energization

Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energy sources supporting the energization of trapped electrons. EHs propagate with velocities from 1000 to 20,000 km/s (a few times larger than the thermal velocity of the coldest background electron population). The parallel scale of observed EHs is from 0.3 to 3 km that is of the order of hundred Debye lengths. The perpendicular to parallel scale ratio is larger than one in a qualitative agreement with the theoretical scaling relation. The amplitudes of EH electrostatic potentials are generally below 100 V. We determine the properties of the electron population trapped within EHs by making use of the Bernstein-Green-Kruskal analysis and via analysis of EH magnetic field signatures. The density of the trapped electron population is on average 20\% of the background electron density. The perpendicular temperature of the trapped population is on average 300 eV and is larger for faster EHs. We show that energy losses of untrapped electrons scattered by EHs in the inhomogeneous background magnetic field may balance the energization of trapped electrons.

Vasko, I; Agapitov, O.; Mozer, F.; Artemyev, A.; Drake, J.; Kuzichev, I.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023083

Electron acceleration; electron holes; injection; Radiation belt; solitary waves; Van Allen Probes

Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth\textquoterights radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Kanekal, S.; Angelopoulos, V.; Green, J.; Goldstein, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2016

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022400

chorus-driven local acceleration; Electron acceleration; radial diffusion; Van Allen Probes

2015

Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

Li, W.; Thorne, R.; Bortnik, J.; Baker, D.; Reeves, G.; Kanekal, S.; Spence, H.; Green, J.;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065342

Chorus wave; Electron acceleration; solar wind conditions; Van Allen Probes

2014

Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt

We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100\% and 20\% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60\%-80\% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 hours. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale.

Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Zong, Q.-G.; He, Zhaoguo; Shen, Chao; Zhang, Min; Wang, Shui; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Funsten, H.; Blake, J.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020709

Chorus wave; Electron acceleration; Radiation belt; substorm injection; Van Allen Probes; Wave-particle interaction



  1